High winds capable of downing power lines across a very-dry Northern California are causing officials to shutoff power this week for hundreds of thousands of residents. The decision came as a way to reduce the threat of wildfires in an area already hard-hit by natural disaster.

Mother Nature is once again flexing her powerful muscles and Californians are left to cope as best they can, with the information they have. This week’s weather event is yet another example of why researchers are working on how to use machine learning (ML) as a disaster preparedness and response tool. Because machines can quickly analyze massive amounts of data from numerous sources, the goal is to use that information to help community leaders and emergency response teams make more informed decisions.

Like natural disaster preparedness and response, ML also has important implications for endpoint security and the disaster that could originate on an endpoint while under cyberattack. As our CTO, Nicko van Someren explains in the below video prepared for National Cybersecurity Awareness Month, ML is key to improved security by way of a direct pull through from IT asset management.

An IT Asset Management Job with a Security Outcome

Within the context of IT asset management, organizations are busier than ever trying to manage the growing number of endpoint devices, applications and data. IT complexity has reached all-time highs. ML has been a very valuable tool for managing that complexity and, while doing so, can also make direct contributions to better security and more resilient endpoints. With the power of ML, you’re not only gaining improved visibility into your assets, you’re learning more about the actions and events happening there and finding patterns.

With patterns inevitably come outliers and so often, that’s where vulnerabilities hide. Being able to recognize outliers and remediating any resulting risk is how endpoints – and enterprises – become more resilient.

As Nicko explains: “Keeping machines up to date is an IT management job, but it’s a security outcome. Knowing what devices should be on my network is an IT management problem, but it has a security outcome. And knowing what’s going on and what processes are running and what’s consuming network bandwidth is an IT management problem, but it’s a security outcome. I don’t see these as distinct activities so much as seeing them as multiple facets of the same problem space.”

The growing number of assets is a challenge, certainly. And as security becomes an increasingly critical risk, organizations have been layering on more and more security tools – ten or more agents on each endpoint, says our research. But increased security spend does not equate to improved security. That much is painfully clear. Instead, you’re left with a complex environment full of competing, fallible agents and, consequently, a false sense of security.

Visibility is key and ML can deliver a complete data set that then gives you invaluable insight on what is happening on your endpoints. This way, you can work to reduce complexity and improve endpoint resiliency.

To learn more about the role of ML with IT complexity, watch our newest Cybersecurity Insights video below. And, subscribe to our complete YouTube series.

Complexity is Killing IT